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Anovel velocity—vorticity formulation of the unsteady, three-dimensional, Navier—
Stokes equations is presented. The formulation is particularly suitable for simulating
the evolution of three-dimensional disturbances in boundary layers. A key advantage
is that there are onthreegoverning equations for three primary dependent variables.
Another advantage is that no wall boundary conditions are needed for the vorticity.
Instead the conditions placed on the velocity are linked to the vorticity field through
integral constraints based on the definition of vorticity.

Numerical methods are presented in the context of application to the three-
dimensional boundary layer over a rotating disc. The discretization scheme uses
spectral expansions in the wall-normal and azimuthal (or spanwise) directions and
compact finite differences in the radial (or streamwise) direction. The scheme is
implemented so that the advantages of spectral convergence can be combined with
the use of an efficient line-iteration solution procedure. The linearized form of the
new velocity—vorticity method is validated for the case of convective instabilities
evolving over both rigid and compliant discse 2001 Academic Press

1. INTRODUCTION

Velocity—vorticity methods have many attractive features as a basis for calculating |
steady flow fields. Accordingly, it is all the more unfortunate that the methods curren
in use generally suffer from two major drawbacks. Firstly, for unsteady three-dimensio
problems they require six dependent variables which compares poorly with the four requ
in formulations using primitive variables. Secondly, the lack of a boundary condition
vorticity can make it necessary to adopt relatively elaborate schemes in order to ensure
the computed velocity and vorticity fields are divergence-free. We will show that both
these drawbacks can be overcome for an important class of problems.
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Our novel formulation stems from a desire to develop an efficient, yet versatile, metf
for simulating the evolution of three-dimensional perturbations in boundary layers. \
are particularly interested in simulating passive and active flow control; for example, t
use of finite-length compliant panels [14] and MEMS and micro actuators in the form
deformable bumps or jets issuing from orifices in the wall [8, 9, 11, 32, 33, 50]. The
are highly elliptic problems featuring rapid change in the streamwise direction and a
local upstream propagation of disturbances. This latter feature is also found when there
absolute instabilities. We wished to develop a computational method that could be usec
full direct numerical simulations but, at the same time, would also be suitable for integrat
the linearized Navier—Stokes equations. In this respect it would emulate the PSE (Paral
Stability Equation) approach developed by Bertolettal. [4] (see, also, [31]). However,
unlike the PSE approach, our method is fully elliptic and no restrictions are placed on
form of the disturbance. We do not, however, expect our method to compete in term:s
computational efficiency for problems which are suitable for using the PSE approach. T
said, we can see no reason why our velocity—vorticity formulation could not be used as
basis of a three-dimensional PSE scheme.

Fasel [22], Speziale [57], and Gatski [25] review the advantages of velocity—vortici
methods. One of the main advantages is the elimination of the pressure by using the Na\
Stokes equations in the form of a vorticity transport equation

DO 2

ﬁ_ﬂ-VU+vVQ, (1)
where D/Dt denotes the material derivativ€} and U denote, respectively, the three-
dimensional vorticity and velocity vector fields, amds the kinematic viscosity. Thus,
only three dependent variables need to be updated in time, as compared with four w
using primitive variables. Equation (1) is supplemented by the continuity equation and
definition of vorticity, i.e.,

V.U=0 Q=VxU. (2a,b)

Here Eq. (2a) is written in the form used for incompresssible flow. In principle, Egs. (1
(2a) and (2b) are sulfficient for determining the velocity and vorticity fields. However, mau
velocity—vorticity methods use a Poisson equation, obtained by taking the curl of Eq. (:
and making use of (2a) to determine the velocity from the vorticity. This Poisson equati
takes the form:

VU =-VxQ. (3)

Gatski [25] classified velocity—vorticity methods proper into two basic categories, bc
of which use the vorticity transport equation (1) to update the vorticity but differ in ho
the velocity is then subsequently determined from the vorticity fieldM@&dhod Asolves
Egs. (2a) and (2b) sequentially or simultaneously Ber-examples include the studies
made by Gatsket al.[26, 27], Koh and Bradshaw [41], and Bertagnolio and Daube [3]; an
(2) Method Bsolves the Poisson equation (3) fd+—examples include the works of Fasel
[21, 22], Dennis and Quartapelle [20], Fasel and Konzelmann [23], Easdl[24], Kral
and Fasel [42], Klokeet al.[39], Rempfer and Fasel [52, 53], Rist and Fasel [54], Wu, Wu
and Wu [61], Trujillo and Karniadakis [59], and Meitz and Fasel [49].
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As mentioned above, difficulties can arise with velocity—vorticity methods, in ensurir
that both Egs. (2a) and (2b) are properly satisfied by the numerical solution. For example
the case of Method B, although Eq. (2a) is used to obtain Eq. (3), a divergence-free velc
field is not necessarily guaranteed. However, it can be shown [22] that provided Eq. {
is satisfied on the boundary of the computational domain, it will be satisfied in the inter
(in practice this implies that the error is maximal on the boundary). It can also be sho
that provided the computed vorticity field is solenoidal, the velocity field computed usil
Eq. (3) will satisfy Eq. (2b) everywhere in the domain, provided that Eq. (2b) is satisfif
on the boundary. These considerations led Fasel and his coworkers to formulate nume
boundary conditions in terms of the first and second derivatives of the perturbation vortic
components. This approach usually works well in practice, but, as will be discussed in ir
detail below, it can lead to difficulties in the case of parallel or near-parallel undisturb
flows.

Gresho [28, 29] and more recently Weinan and Liu [60] critically review and analy:
the various forms of the vorticity boundary condition used by previous authors. A comm
view has developed over the past ten years or so that any vorticity boundary condition
to be global in the sense that the values at all points on the boundary should be linl
However, Weinan and Liu show that in the context of finite-difference schemes, at le:
many of the newly developed global boundary conditions are actually equivalent to ol
local formulae. They thereby cast serious doubt on the usefulness of these global boun
conditions since they are much more complicated to implement than local ones. Our vi
as will be seen, is that an integral constraint is a far more satisfactory and simpler, ti
global, alternative to a boundary condition.

Many authors (e.g., Gatskit al. [26, 27], Wu, Wu, and Wu [61] and Bertagnolio and
Daube [3]) decompose their computed vorticity fi€M, which is not divergence-free in
general, into a solenoid&¢ and rotational par€2. It therefore follows that

VZp =V - Q°. (4)

Equation (4) can then be solved Gt which is used to project the comput& field onto
a divergence-free field,

Q=Q° — V. (5)

Wu, Wu, and Wu [61] established the conditions for optimum projection and also show
that it is possible to solve Eq. (3) for a divergence-free velocity field usiraglaitrary non-
solenoidal2® in place of€2. They showed that the projection can be carried out relativel
cheaply without the need for a time-consuming inversion of a Poisson equation. Recel
Bertagnolio and Daube [3] generalized this approach of a Helmholtz decomposition cc
bined with projection onto a space of divergence-free vectors to generalized curvilin
coordinates.

In any discussion of vorticity boundary conditions, it is important to appreciate th
the only fundamental boundary conditions are those that must be imposed on the velc
field. (See [28, 29] for a detailed discussion of this point.) When boundary conditions
the vorticity are derived and utilized within a particular formulation of the Navier—Stoke
equations, they cannot provide any constraints that are genuinely additional to those the
required for the velocity. For instance, in the velocity—vorticity formulation adopted by Fas
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et al.[24] the conditions imposed on the velocity field provide the boundary conditions f
Poisson-type equations that relate the velocity field to the vorticity field. Exactly the sal
information is employed, a second time, to obtain boundary conditions for the vortici
These latter conditions are derived by simply substituting the boundary conditions impo.
on the velocity field into algebraic relations that follow from the Poisson equations, tl
vorticity definition, and the continuity equation.

Because there is no general requirement to impose any constraint on the vorticity
cannot be traced back to the conditions imposed on the velocity field, the apparent nece
for vorticity boundary conditions is often an artifice of the chosen numerical method. Inde
as pointed out by Gresho, nearly thirty years ago Davis [17] formulated a streamfunctic
vorticity method based on finite differences that implicitly discarded the need for a
boundary conditions on vorticity. Alittle later, Barrett[2] and Campion—Renson and Croct
[7]independently also proposed streamfunction—vorticity methods, this time based on fii
elements, in which no boundary condition isimposed on vorticity. In effect, in such schen
the vorticity is constrained or determined by some sort of integral relation, or its equivale
over the computational domain which relates the unknown value of the vorticity at t
boundary to its values in the interior without any need to specify the former. An approzg
of this kind has been proposed by Dennis and Quartapelle [20] who use Green'’s theo
to generate a set of integral conditions of this sort. Dennis and Hudson [18, 19] prop
a hybrid of Gatski's Methods A and B which for two-dimensional flows solves one of th
Poisson equations (3) for one of the velocity components and then integrate the contin
equation to solve for the other. Shen and Loc [56] have proposed a three-dimensional ver
of this approach.

Perhaps the most straightforward example of the use of an integral constraint on vorti
is provided by Guevremordt al.[30]. They impose no boundary conditions on vorticity
in their two-dimensional finite-element method. Instead, a weighted integral relation is i
posed which is based on the definition of vorticity and evaluated over the entire domz
Our approach bears some similarity to that of Guevrenedral., although it was devel-
oped in ignorance of their work. It is a hybrid of Methods A and B. We solve the Poiss
equation (3) for the normal velocity component and use the definition of vorticity (2b)
link the surface values of the other two velocity components to integrals of the vortici
components. The two-dimensional version was given by Davies and Carpenter [14]. Tt
this method replaces boundary conditions with integral conditions on vorticity which lir
it to the boundary conditions on velocity on the solid surface in a natural and very straig
forward way. In many cases, of course, it is simply the no-slip condition that is impos
on the solid surface. This approach provides a relatively simple, but rigorous, method
ensuring a divergence-free velocity field and finding a solution to the vorticity field th.
satisfies Eq. (2b).

We will now discuss the principal disadvantage of the current three-dimensional veloci
vorticity methods, namely that it appears to be necessary to solve the three transport €
tions (1) for the vorticity components, as well as the three Poisson equations (3), or t
equivalents, for the velocity components. In contrast, for two dimensions the velocit
vorticity formulation can readily be reduced to two governing equations. An obvious wi
to achieve this is to use a streamfunction—vorticity formulation such as, for example, Der
and Quartapelle [20]. Itis also possible to retain the velocity—vorticity formulation and elir
inate the streamwise velocity component between the continuity equation (2a) and the
inition of vorticity (2b). This approach was followed independently by Koh and Bradsha
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[41] and Davies and Carpenter [14]. Wu, Wu and Wu [61] point out that in three dimensic
the continuity equation (2a) can be used to determine the third component of velocity ra
than solving a third Poisson equation. Adopting this procedure can lead to consider:
savings in CPU time, especially if projection onto a divergence-free space is required. N
ertheless, our intuition suggested that it should be possible to carry out three-dimensi
calculations with onlythree (primary) governing equations. And, indeed, in the preser
paper we show how it is possible for a wide class of problems to derive a velocity—vortic
formulation which is based on only threegmary dependent variables.

In fact, Kim, Moin, and Moser [37] have already shown that for homogeneous flc
in a planar channel, at least, it is feasible to employ a velocity—vorticity formulation th
involves only two primary dependent variables and two evolution equations. One evolut
equation determines the Laplacian of the normal velocity component, while the other is
the usual transport equation for the normal component of the vorticity. The remaining t
velocity components are obtained by applying the continuity equation and the definit
of the normal component of the vorticity. For the doubly spatially periodic computation
domain appropriate to homogeneous channel flow, the construction of the spanwise
streamwise components of the velocity from the normal components of the velocity e
the vorticity may be accomplished in a direct and efficient manner, using relatively sim
manipulations of Fourier series representations for the flow-variables. However, it is
obvious that a similarly efficient numerical method could be implemented for more gene
flow configurations that are not periodic along two spatial directions, or geometrica
simple in some other fashion.

A distinctive, but potentially disadvantageous, feature of the formulation adopted
Kim, Moin, and Moser is that it involves a fourth-order evolution equation for the norm
velocity component. This apparent drawback was successfully dealt with by introducing
intermediate variable within a numerical scheme that split the fourth-order equation int
pair of coupled second-order equations. The first of these split equations may be class
as a vorticity-type transport equation, while the second takes the simpler form of a Pois
equation. Thus, the system of governing equations used by Kim, Moin, and Moser consis
in practice, of two vorticity-type transport equations and a single Poisson equation.
shall develop a velocity—vorticity formulation that involves a similar system of governir
equations. However, our formulation would appear to be less restrictive with regard to
flow and the bounding surface geometry. Moreover, the ease of its numerical implementa
is not fine-tuned to any presumed streamwise periodicity of the computational domain.
shall show, in particular, that our velocity—vorticity formulation readily lends itself to th
efficient simulation of disturbances in spatially inhomogeneous flows.

In our standard formulation, the dependent variables are perturbations, which are finit
general, to a known undisturbed flow field. The geometry is relatively simple, as illustra
in Fig. 1. We envisage a three-dimensional flow field over a flat or slightly curved sol
surface. The solid surface need not be completely rigid. Part of it may be replaced k
compliant surface or some other sort of interactive device, such as a suction hole or slc
a microjet-type actuator.

The three primary dependent variables are the two perturbation vorticity compone
in the plane of the solid surface and the perturbation normal velocity component. Th
are governed by two vorticity transport equations and a Poisson equation. The secon
dependent variables are the remaining vorticity and velocity components and press
The distinction between primary and secondary dependent variables is that the latter
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FIG. 1. Arbitary three-dimensional disturbance in a three-dimensional flow over a solid surface.

be determined explicitly entirely from the current values of the former. Accordingly, th
secondary variables can, in principle, be eliminated from consideration and storage is
required for them. We will show that, provided the dependent variables can be forcec
satisfy certain rather general conditions at infinity, this formulation is fully equivalent t
the Navier—Stokes equations in primitive-variable form.

Owing to our interest in simulating the evolution of perturbations in boundary layer
the velocity—vorticity approach of Fasel and his coworkers, was an attractive starting po
In many respects, despite the evident differences, our method can be regarded as a
ral development from theirs. It is obviously computationally more advantageous to wc
with only three primary governing equations. A further, less-evident advantage of our f
mulation is that it allows spectral discretization in the normal, as well as the spanwi
directions. Finite differences are used only for the streamwise direction. Furthermore
is possible to retain simple pentadiagonal and tridiagonal matrix schemes even with
spectral discretization. This feature leads to additional computational efficiency.

The present paper is mostly devoted to describing the formulation and other theoret
and numerical aspects of our velocity—vorticity method. But we also provide evidence
its practical utility by describing a numerical study of the convective instabilities of th
three-dimensional boundary layer over a rotating disc. The study includes cases whe
compliant annulus is inset into the disc’s surface. For this particular application, we consi
small-amplitude disturbances and employ a linearized form of the governing equations.
overview of the literature on the rotating disc boundary layer is given in the reviews |
Reed and Saric [51] and Cooper and Carpenter [12]. Here we will only provide a minin
account that is sufficient to motivate our numerical study.

The standard linear stability analysis for the rotating disc boundary layer is based o
sixth-order system of ordinary differential equations [46, 48]. The results of this analysis
well-documented and can be used to provide validation for our computer code. Howe'
the standard stability analysis neglects the slow variation of the flow variables in the ra
direction. Our method, being based on the complete linearized governing equations, «
not need to make any such assumption. Accordingly, we can study the effects of incluc
the so-called “nonparallel terms.” It turns out that they have only a slight effect on tl
convective instabilities. This is in accord with the results of an earlier study by Malik ar
Balakumar [47] using the PSE approach.

Three distinct families of eigenmodes have been identified for the rotating-disc bound
layer. Recently Lingwood [43, 44] showed that the Type | mode (which is essentially .
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inviscid inflexion-point instability) coalesces with the, hitherto obscure, Type Il mode 1
form an absolute instability. She also noted that the Types | and Il modes could coale
(The Type Il is a viscous mode and is destabilized by the effects of Coriolis acceleratic
In this case, the coalescence first occurs when the individual eigenmodes are convect
stable. Koch [40] suggested that, since such a coalescence, which he termed directresor
corresponds to a double root, the Cauchy residue theorem could be used to evaluat
form of the coalesced mode. He thereby showed that algebraic growth would occur.
sufficiently high levels of background noise, algebraic growth could provide a route
transition. Our numerical simulations were successful in confirming the existence of
algebraic growth, thus providing a particularly stringent validation of the computer coc
However, in this instance the effects of the so-called “nonparallel” terms were found to
much more significant. The “nonparallel” simulations suggest that, in practice, for a rig
disc the algebraic growth would be dominated by the onset of convective instability sligh
further outboard.

A separate paper will be devoted to a study of the implications of the absolute instabi
for global behavior. It suffices here to note that such a study has, in fact, been success
undertaken [16] using our new velocity—vorticity formulation and discretization scher
to conduct an appropriate set of numerical simulations in an efficient manner. The res
of these simulations appear to suggest that the slow radial flow variation does have
important effect, which leads to a qualitative change in the global behavior of the rotatir
disc boundary layer, compared with Lingwood’s [43] local “parallel-flow” theory.

The remainder of the present paper is set out as follows. Section 2 describes our velo
vorticity formulation of the Navier—Stokes equations for the general case. In Section 3,
adapt the formulation for the rotating-disc flow. The numerical methods are describec
Section 4. The results of a study of the convective instabilities of the rotating-disc bound
layer obtained with our velocity—vorticity method are presented and discussed in Sectio
Finally, the conclusions are given in Section 6.

2. REFORMULATION OF THE NAVIER-STOKES EQUATIONS

In this section we describe the new velocity—vorticity formulation of the Navier—Stok
equations and demonstrate its equivalence to the usual formulation in terms of primi
variables. We suppose that there is an incompressible fluid flow in the semi-infinite dom
Z € [n, 00), wherez = n(x, vy, t) defines the location of a solid, but possibly nonstationar
or porous boundary to the flow domain. For the case where the boundary is a flat rigid w
we will setn = 0. Consequentlyz will be referred to as the wall-normal coordinate. It is
assumed that there is a known undisturbed-flow solution represented by the velocity
vorticity fields

Ut =UB Ve w?, af=(Q7alal).
The total velocity and vorticity fields are then decomposed as
U=UB+u Q=0%+w, (6a,b)
where

u= (u7 v, w)’ w = ((l)x, wy’ Cl)z)
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represent perturbations from the prescribed undisturbed flow. We will consider the goverr
equations for perturbations rather than the total flow-variables, since this yields a m
convenient formulation for present purposes. (If so desired, the undisturbed flow can
determined by making slight modifications to the governing equations for the perturbatio
Details are included Appendix A, together with some comments about how the formulat
could be amended when there is an upper physical boundary located atzfjnithe
assumption of a Cartesian coordinate system provides for an economic exposition, b
not essential. Cylindrical polar coordinates will be employed for the rotating-disc problel

We first divide the components of the perturbation flow-fialdss into two sets. The
componentgwy, wy, w} will be referred to aprimary variableswhile the remaining com-
ponents{u, v, w,} will be identified assecondaryvariables. The primary variables are
obtained by projecting the velocity field along the wall-normal direction and projectir
the vorticity field on to the orthogonal plane, which is parallel to the wall. The order ¢
combination of these projections with the velocity and vorticity fields is reversed in tt
case of the secondary variables. The distinction between primary and secondary variz
is made because the latter may be defined explicitly in terms of the former, and thus
principle, eliminated completely from consideration.

From this point on, unless explicitly stated otherwise, all variables will be dimensionle:
We will show that the evolution of the three dimensionless primary varighlgswy, w}
may be determined using just three equations, namely

d aN oN 1
Wy z 90y _ _vzwx (7)

ot ay 0z R

0 oN N 1
9@y X _ "2 = 2V, (8)

ot 0z aX R
Vo = Jox _ oy )

ay aX
whereN = (Nx, Ny, N,) is defined as

N=QB xu+wxUB+wxu. (20)

The Reynolds numbeR is defined in the usual manner, using the appropriate velocity ar
length scales chosen for the nondimensionalization. The two equations (7) and (8) are
transport equations for theandy components of the vorticity. The form fbkshows that the
full nonlinearity of the transport equations has been retained. For the rotating-disc numer
simulations, a linearization was performed by dropping the final term in Eq. (10). It shot
be stressed that the linearization, useful though it is for studies of the evolution of sm
amplitude disturbances, is not an inherent feature of our velocity—vorticity formulatio
Equation (9) can be obtained by taking the wall-normal component of the relationship

Viu=-V xw,

which is the perturbation form of Eq. (3).
Clearly, the convective quantity appearing in the transport equations can only be fully
evaluated if the secondary variables v, w,} are known. Accordingly we make the explicit
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definitions

u:—/z (a)y—i-z—z:())dz (12)
v:/ <wx_8_w> dz (13)
z ay
®(dwyx  dwy
a)z—/Z < % +a—y> dz (14)
The first two of these definitions can be obtained by integrating the appropriate compon
of the definition (2b) of vorticity with respect to It is assumed that bothandv vanish at
infinity. The definition ofw, follows from integration of the condition that the vorticity be
solenoidal. With the definitions (12)—(14) of the secondary variables, the quisintay be
written explicitly in terms of the primary variables. The two transport equations (7) and (¢
together with the Poisson equation (9), can thus be viewed as a system of three govel
equations for the three unknown primary variables; all reference to the secondary varia
may be eliminated.
Thus far, we have indicated how three differential equations and three explicit definitic
can be derived for the six components of the velocity and vorticity perturbation fields. \
now show that, from such a limited basis, it is possible to recover the full Navier—Stok

equations in primitive-variables form, provided two further conditions are satisfied for t
behavior of the perturbations as—> oc.

2.1. Equivalence to the Primitive Variables Formulation

Differentiating Eqgs. (12) and (13) with respectzave obtain the relations:

0 0 au a
W = (15a,b)
y 0z dz  0X

Wy

Substituting Egs. (15a) and (15b) into Eq. (14) and carrying out the integration gives

dv  au
=— - —. 16
P27 9% T ay (16)
Thus, the secondary variablgs v, w,} are defined so that the vorticity does, in fact, satisfy
the usual definition (2b) of vorticity. The solenoidal property of the vorticity perturbatio
field

V.w=0.

follows immediately. (It also follows automatically from the definition of the secondar
variablew, given in Eq. (14).)

If we differentiate the definition (12) af with respect to, the definition (13) ob with
respect toy and then add we obtain

au  dv ® /dwy  dwx  Pw 9w
—+—=—/ -+ +_—)dz (17)
X Ay . ax gy  oax ay
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Substituting for the integrand using the Poisson equation (9) then gives

u gv dw
T Tt (18)
ox "oy oz ik az

It follows therefore that we can recover the incompressibility condition (2a), provided tt
.0
lim 22 —o. (19)

This does not represent an additional constraint so far as the primitive-variables formula
of the Navier—Stokes equations is concerned. Itis satisfied automatically ifincompressibi
is enforced and the, v components of the perturbation velocity vanisk as oo. However,
in our formulation, it would appear that the condition (19) needs to be imposed directly. \
will show that, in practice, this presents no difficulty, provided an appropriate coordine
transformation is utilized to map the physically semi-infinite domain inztd@ection on
to a finite computational domain.

Differentiating the vorticity transport equations (7) and (8) with respest tg respec-
tively, adding the results, and then using the solenoidal property of the perturbation vortic

field gives
9 (dw, Ny N\ 8 /1,
2 Y = 2 Zv,). 20

82(8t T ox 8y> 8Z(R vz (20)

By integrating this with respect it may be concluded that the transport equation.fpr
will hold at all z-locations if it can be satisfied in the limit as—> oo. Thus, we can recover
the transport equation

30)2 a Ny 8 NX 1

= =V, 21
st T ax sy R ™ (21)

provided the perturbation flow-fields can be determined in a manner that ensures

_ (dw, 0Ny AN, 1,
Iim<{—+—"————-V =0. 22

The secondary variablds, v, w,} are all defined so as to vanish in the limit as the wall-
normal coordinate approaches infinity. We will also assume that the velocity perturbat
componentw vanishes and that the corresponding compoMghtof the undisturbed flow
tends to a constant. (This constant will be zero for many boundary-layer flows, for exam
the flow over a flat plate, but is nonzero for the voariKé&n flow over a rotating disc.) The
condition (22) may then be simplified to

190 w ow
lim (—WB 4+ = — 1Y) =0 23
Hoo( +Raz>(8x+ ay (23)

where the solenoidal property of the vorticity has been reapplied to obtain a condition
terms of primary variables only. Such a condition would automatically be satisfied for t
vorticity componentsyy, wy that could be derived from solutions of the Navier—Stoke:s
equations in the usual primitive variables formulation. In our formulation it would appe:
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to be necessary to impose (23) directly. However, as with the previous condition (:
required for ensuring incompressibility, the need for any explicit enforcement of (23) c
be circumvented by making a judicious choice of coordinate mapping in-thection.
More details will be given later.

Assuming that some means is found for satisfying condition (23), the vorticity transp
equation (21) for the componedmnt can be combined with the vorticity transport equations
(7) and (8) for the other two componenis, wy to give

au 1
Vx{at+UB-Vu+u-VUB+u~Vu—szu}zo, (24)

where the definition (2b) of vorticity has been used to eliminate any direct reference
the perturbation vorticity field and there has been some straightforward manipulation us
vector identities. (Note that definition 2b is not assumpdori, butis shown above to follow
from our formulation.) Since we are dealing with the simply connected domain defined
Z > n(x,y,1t), the irrotational vector quantity which appears enclosed in brackets in (2
may be written as the gradient of some scalar field. This scalar field can be identified as
negative of the perturbation pressure field. Hence, we can recover the momentum equa
for the perturbation velocity components in the usual primitive-variables form.

We have now shown that the primitive-variables formulation of the Navier—Stokes eq
tions can be obtained from our compact velocity—vorticity formulation. It should be recall
that the latter formulation comprises the three governing equations (7), (8), and (9) for
primary variableqdwy, wy, w} together with the relations (12)—(14) which define the sec
ondary variablegu, v, w,}. Full equivalence can only be ensured if the primary variables al
constrained to satisfy the limiting conditions (19) and (23). The assumption was also m
that all three components of the perturbation velocity field vanish fer oco. Such behavior
was built into the definitions of the secondary variahles. By contrast, the vanishing of
w may be used to provide a boundary condition for the solution of the Poisson equation
We will now discuss what other boundary conditions must be imposed, and how they «
be associated, individually, with each of the governing equations for the primary variabl

2.2. Velocity Boundary Conditions at the Wall

The motion of the fluid must be matched to that of the solid wall which is located
z = n(X, Y, t). This gives boundary conditions of the general form

UK, Y, 7, ) = Uy (X, Y, 1), (25)
v(X, Yy, n, t) = v, (X, Yy, ), (26)
w(Xv Yy, n, t) = ww(X, Y, t)’ (27)

whereu,,, v,,, w,, are functions determined by the wall motion or otherwise. For exampl
if the fluid was bounded by a flexible wall which could only move in thdirection we
would need to set

U, (X, Y, 1) = —UB(x, y, n, 1), (28)
vu(X, Y, 1) = =VB(x, y, n, 1), (29)

0
Wy (X, Y, 1) = a—'Z(x, y, 1) — WB(x, y, 1. 1). (30)
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The case where there is a rigid wallzat 0 can be treated by taking= 0 and then simply
setting

Uy = Uy = wy, = 0. (32)

It is a straightforward matter to associate the boundary condition (27) with one of
the governing equations; the prescribed wall-motion functigncan be used to define a
Dirichlet condition for the Poisson equation (9).

As noted in Section 1, the derivation of vorticity boundary conditions has been a sou
of difficulty for most previous velocity—vorticity methods. When transport equations fc
all three components of the vorticity are used in conjunction with all three Poisson eq
tions (3), it would appear that a total of six boundary conditions must be imposed at
wall. The Poisson equations can be solved by using the boundary conditions on the
locity perturbations in a obvious manner, but the conditions required for the solution
the vorticity transport equations are not so readily supplied. Fasel and his collabora
[21, 23, 39, 54] made use of boundary conditions involving first and second derivati
of the perturbation velocity and vorticity components. This approach usually works w
in practice but its limitations can be illustrated by considering an almost-parallel, tw
dimensional, undisturbed flow along tkedirection. (This, of course, includes the case of
Blasius flow over a flat plate studied by Fasel and his coworkers.) If attention is restrici
to two-dimensional disturbances, there is only a single nonvanishing component of
perturbation vorticity, namelywy. Its evolution is governed by a transport equation of the
form

@ U B@ +w ue
ot ax 022

: 1
+ non-parallel termg- nonlinear terms= ﬁvzwy. (32)

It can be seen that, when nonparallel and nonlinear terms are neglected, there is no c
coupling between the perturbation vorticiiy, and the streamwise perturbation veloc-
ity componentu. For the transport equation (32) Fastlal. used the vorticity boundary
condition

doy  *w 02w,

ax ~ 9z2 ax2

forz=n (33)

obtained by substituting the boundary condition (27)’ointo the Poisson equation (9).
(Faselet al.setn = 0 but allowedw,, # 0 in order to generate disturbances by suction an
blowing at the wall.) It may be noted that no use has been made of the no-slip bound
condition. Thus, should an approximation of parallel undisturbed flow be applied anc
linearization performed, the evolution of the vorticity would not be constrained, eith
directly or indirectly, by the no-slip condition an It follows that nonparallel or nonlinear
terms must be retained in the vorticity transport equation (32) in order for there to be «
prospect of obtaining a well-posed problem. Even then, the coupling betwesmu can

be expected to remain weak if the effects of nonparallelism and nonlinearity are small
fact, it can be formally argued that the scheme adopted by leasdlremains ill-posed
even if such effects are taken fully into account [13]. In practice, of course, this appar
difficulty has not prevented the nonparallel and nonlinear version of the scheme being U
to conduct viable numerical simulations.
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A major advantage of our formulation is that there is natural means of associating
wall-motion boundary conditions om and v with the vorticity transport equations. We
avoid the difficulties mentioned above by replacing wall boundary conditions for the vc
ticity with integral constraints obtained directly from the definitions (12) and (13) fc
the secondary variables with account taken of the conditions (25) and (26). Thus,
obtain

o0 008
/a)ydz=—uw—/ a4z (34)
" n  0X

/wxd2=vw+/ z—l;}dz. (35)

n n

Since the substitution can be reversed, it is clear that these two relations are fully equive
to the wall-motion boundary conditions farandv. The relations (34) and (35) may thus
be viewed as constraints on the evolution of the primary variablesy, respectively.
Each relation can be associated with one of the vorticity transport equations (7) and
to provide a means of satisfying the no-slip conditions, or their equivalents, for the flt
perturbation velocity. This ensures that the problem remains well-posed even when r
parallel and nonlinear terms are neglected or absent from the vorticity transport equati
Moreover, there is an attractive economy in the usage of the wall boundary conditic
on the fluid perturbation velocities; each of the conditionsdpo, w is applied once,
and once only, to provide conditions that constrain the developmeat aby, and w,
respectively.

2.3. Wall-Normal Coordinate Mapping and the Conditions forz co

As suggested earlier, there is no difficulty in implementing a conditiom amthe limit
Z — oo. The vanishing ofv provides a boundary condition for the solution of the Poisso
equation (9). It is not so obvious how, in the same limit, the behavior of the other t
primary variablesw, andwy, can be constrained. The secondary variables\d v are
defined in such a way that they must both approach zem-asco. This implies that the
limiting behavior ofu andv cannot be used to obtain any additional constrainb@and
wy. Accordingly, such constraints must be obtained by some other means. In fact, we f
already derived two further conditions that must be satisfiea fer oo, namely (19) and
(23). Unfortunately, the first condition only constrainswhile the second one involves both
components of the perturbation vorticity in a symmetric manner. As a consequence,
is no unambiguous way in which the two conditions can be associated with the individ
transport equations for the vorticity components. In the present study, we will sidestep
issue by simply replacing the conditions (19) and (23) with the more easily implemented
stronger conditions that bo#y andwy vanish forz — oo. We thusimpose the same form of
limiting behavior for all three of the primary variables. The validity of such an approach ¢
be monitored, retrospectively, by checking that the primary variables computed using tt
replacement limiting conditions do, in fact, satisfy the conditions (19) and (23). Clear
this consistency requirement would be met if it was found thatzttierivatives of all three
of the computed primary variables vanishedZer oco. In practice, it is possible to obtain
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satisfactory solutions by making use of the coordinate transformation
¢ =0 (36)

which maps the semi-infinite physical domaire [0, co) on to the finite computational
domain¢ € (0, 1]. The parametel is a stretching factor. It can be seen that the limit
Z — oo corresponds to the limit — 0. Derivatives with respect to the physical coordinate
z are related to those with respect to the transformed co-ordinadeording to

2
ot __gtat a7
0z | a¢
so that it may be inferred that thederivative will vanish forz — oo provided the
¢-derivative remains bounded gsapproaches zero. Thus, if the primary variables ar
determined as functions df, rather tharg, it becomes a straightforward matter to de-
termine whether the-derivatives appearing in the conditions (19) and (23) vanish. W
just need to check that thederivatives are bounded gs— 0. Consequently, provided
our numerical simulations yield solutions for the primary variables which remain smoc
functions of¢ when¢ — 0, the incompressibility condition and the transport equation fo
the wall-normal vorticity will automatically be satisfied. Further discussion concerning t
usage of the mapping (36) is included in the section on numerical methods. In additiol
brief account is given in Appendix B of how the mapping could be modified to deal wit
a nonplanar flow boundary locatedzat n(x, vy, t), for configurations where it is not ap-
propriate to perform any linearization to obtain conditions to be applied=a0. For such
cases, it is possible to perform a simple change of coordinates to obtain a modified se
governing equations for which the boundary conditions required at the physical bound
z = n can be imposed along a planar computational boundary.

3. FORMULATION FOR THE ROTATING-DISC FLOW

3.1. Transformation to Cylindrical Polar Coordinates

Thus far, for expositional convenience, we have used a Cartesian coordinate sys
to present our velocity—vorticity formulation. However, it is not difficult to see that th
formulation only relies upon a decomposition of the perturbation velocity and vortici
fields that combines projections in thelirection with projections on to the orthogonal plane
parallel to the wall. Hence, there is no problem changing to a cylindrical polar coordine
system; all that is involved is a transformation of coordinates in planes defined by cons
values ofz. It is also straightforward to change to a noninertial frame of reference rotatii
at a constant angular velocity about thaxis. The only significant difference from the
formulation for a nonrotating frame is that the Poisson equation (9foreeds to be
employed in order to recover the Coriolis term in the transport equation.fofThere is
no additional term to be included in the condition on the limiting behavior that correspon
to condition (23). The Coriolis term in the transport equationdgis proportional to the
derivativedw/9z, and so must vanish far— oo in accordance with (19), if the continuity
equation is to be satisfied.)
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For the rotating disc the velocity and vorticity fields may be represented as
U=(Urvu9,w), w=(wryw9,0)z)v

where the subscriptsandd refer, respectively, to the radial and azimuthal directions define
by the cylindrical polar coordinate system. The compongntswy, w} can be taken as the
primary variables, whildu,, ug, w,} form the set of secondary variables. The governing
equations for the primary variables, obtained by transforming equations (7)—(9), take
form

owy 10N, 9Ny w 1 , 1 2 dwy
o 202 0% op T 2 (vee 2 ) — 2920 (3
st 10 ez <w9+ 3r> R{( z) 2y g 8

dwg  IN; o N, low 1 , 1 2 dwy
7% - Ao ==Y = 2 ) (v2- = 2L (39
ot Tz " ar T (wr rae) R{( iz) ot 2y (9

V2w=} aﬂ_M , (40)
r \ a0 ar

whereN = (N;, Ng, N,) can be defined as previously by Eq. (10). There are addition
terms on the left-hand sides of Eqgs. (38) and (39) arising from the Coriolis accelerati
They have been written entirely in terms of the primary variables. The faatepresents the
nondimensionalized angular velocity. In a similar manner to before, the secondary varial
may be determined from the primary variables, using the explicit definitions

U = —/ (wg + a_w) dz (41)
z ar
0 10w

Ug = /z (wr - F8_9> dz, (42)

1 [*®/0Cw) dwy
=y [ ( T +a_9)dz (43)

3.2. Undisturbed Flow

The undisturbed flow is taken to be the laminar similarity solution of vamni&hn [36]
which is an exact solution to the Navier—Stokes equations for the flow field above a rotat
disc in an unbounded fluid [55]. It is assumed that the disc rotates at a constant ang
velocity A* about the verticat*-axis, where asterisks denote dimensional quantities. Tt
undisturbed base flow in a frame of reference rotating with the disc is given by

UB* — (UrB>|<7 UQB*, WB*) (44)

These velocity components are related to tleerin similarity variables as

F(z) = U, G@= U2, H@ = WE, (45)

r*A* rA* (V*A*)2

wherev* is the kinematic viscosity and= z*(A*/v*)Y/2.
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FIG. 2. Radial (F), azimuthal (G) and axial (H) velocity components for boundary layer flow over a rotatin
disc.

Thus, the nondimensional undisturbed flow is given by
B r r 1
U (R k) RG’ R ) ) ( 6)

where the Reynolds numbBis defined aRk = r;;‘(A*/v*)l/2 for some selected radial posi-
tionr}. Since lengths are nondimensionalized using the fixed lengthscalgv*/ A*)Y/2,

we haveR = r,. It may also be noted that the nondimensionalized rotation rate is equal
1/R. Thus, when we choose to work in a frame of reference that rotates with the disc, i
necessary to set = 1/Rfor the Coriolis terms included in the vorticity transport equations
(38) and (39). The velocity-profile functiorts, G, andH are plotted in Fig. 2.

3.3. Linearization and the Excitation of Azimuthal Modes

In the present study we are interested in disturbances with vanishingly small amplitu
so we will use linearized governing equations. These are obtained by simply neglecting
nonlinear termw x u in the definition (10) of the quantiti. The linearization makes the
problem separable in the azimuthal direction which allows us to consider individual moc
of the form

u= (0, 0, 0) €, w= (&, dy,»,) M, (47)

wheren is the integer-valued, azimuthal mode number. In order to excite disturbances in
boundary-layer flow, we will prescribe a radially localized motion of the disc surface wit
the same form of azimuthal variation. Because attention is restricted to small-amplitt
disturbances, the boundary conditions may be linearized about the undisturbed wall, wi
is taken to be at = 0. If it is supposed that the disc surface is only allowed to move in th
vertical direction, the linearized boundary conditions may be written as

r_, r ., 0
u,:—ﬁF(O)n, ng—ﬁG(O)T), w:a—}t7 atz=0, (48a,b,c)
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wherez = n(r, 6, 1) is the perturbed location of the disc surface. Substituting (48a) ar
(48Db) into the definitions (41) and (42) of the secondary variables yields the followil
integral constraints on the primary variables

o0 r_, 0w

/wrdz:—r—G/(O)n+/ W4, (50)
0 R 0 r

where, as will frequently be the case in what follows, the assumed azimuthal mode struc
has been used to replace partial derivatives with resp@dbyahe multiplicative factorn.

In order to obtain a radially localized excitation of the fluid the wall displacement tak
the form

n(r,6,t) =a@ —re) b(t) e, (51)

where the functiora specifies the radial variation centred on the radiusr. and the
functionb defines the time-dependent amplitude. Typically, we have employed radial d
tributions of the form

a(r) = e g (52)

where is a scaling factor which fixes the radial extent of the forcingarsla wavenumber
which, when not set equal to zero, may be chosen with the intention of enhancing
response for disturbances with a particular radial wavelength. The time-dependent ampli
may be chosen so as to give a time-periodic excitation, for instance by setting

bt) = (1—e %) e, (53)

whereg is the prescribed temporal frequency anid a parameter chosen to scale the forcing
up from zero amplitude at= 0. Stationary disturbances, generated by stationary “bump:
on the disc surface distributed in accordance with the imposed azimuthal periodicity,
be considered by settiljjequal to zero. Similarly, disturbances can be excited impulsivel
by employing

bt) = (1—e ) et (54)

or some other smoothed approximation to an impulse function.

As an alternative to exciting the flow by introducing a vertical wall motion, it is possibl
to specify a suction/blowing distribution. This can be achieved by dropping the ter
involving n in the integral constraints (49) and (50) and replacing the condition by
the requirement thab = w,, at z = 0 wherew,, is a prescribed function describing the
character of the suction/blowing.

3.4. Dynamics of the Compliant Wall

The effects of wall compliance can be considered by embedding an annulus of compl
material within the otherwise rigid disc (see Fig. 3). The dynamics of the compliant wall m
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COMPUANT
ANNULUS

FIG. 3. Compliant annulus embedded within an otherwise rigid rotating disc.

be simulated using a spring-backed plate model, as in a previous study that was condt
for a different flow-configuration by Davies and Carpenter [14]. It is assumed that t
compliant surface only moves in taalirection. Denoting, as before, the wall displacemen
by n(r, 6, 1), the equation of motion for the wall may be written as
maz—"+dal+862%2n+r<n=—p (55)
at2 at v
wherep,, is the fluid perturbation pressure acting at the wall, ¥Rd the two-dimensional
Laplacian operator defined by
o2 _ 02 f ~|—1af . 19°f
Tarz rar o r2902°
The nondimensional parametars d, B, K are respectively the areal density, damping
coefficient, flexural rigidity, and spring stiffness per unit area of the compliant wall. Tt
perturbation pressure distribution can be found by integrating the linearimemmentum
component of the Navier—Stokes equations to obtain

®fow 1 ow ow 1 /0(rwg) Oy
w= | 1 (P2 ) = 29V g, (56
P /o {8t+R<r or T )80>+rR< ar ae)} z (59

In practice, the terms involving the vorticity may be expected to be negligible at rad
locations of interest. They will give contributions that are of the same order as the we
normal viscous stresses that were ignored in Eqg. (55). Assuming that some suitable mi
can be found for solving the equation of motion for the compliant wall, values for tf
displacemeni and the wall velocityn/dt may be substituted into the linearized boundary
conditions and vorticity integral constraints given in Egs. (48)—(50). The only differenc
from before is one of interpretation. Near the forcing locatiea re, the displacement is

simply prescribed, while within the compliant portion of the disc surface the displaceme
is interactively coupled to the fluid disturbances via the fluid perturbation pressure.

3.5. Inflow and Outflow Conditions

In many simulations of transitional boundary layers, the perturbation flow-fields a
assumed to be periodic in two directions parallel to the wall [38]. This periodicity ce
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be built into the numerical methods, through the use of Fourier expansions, leading
highly efficient spectral codes. There is no guarantee that such an approach will lea
a satisfactory representation of spatially evolving disturbances, particularly when stre
upstream influence is anticipated, or the wall boundary conditions are nonuniform. If 1
assumption of streamwise periodicity is dropped, it becomes necessary to address the
of inflow and outflow conditions. The formulation of such conditions for the rotating-dis
flow introduces some additional complications that are not encountered for two-dimensic
boundary layers. If the computational domain is defined, asr < r,, wherer; andrg
denote the radius of the inner and outer boundaries, respectively, then it is not at all obv
that it remains appropriate to use the terms “inflow” and “outflow” conditions. There is tl
distinct possibility that there will be significant propagation and growth of disturbances
the radially inward direction, as well as in the radially outward direction.

In practice, the inner radial boundary does not appear to cause any serious difficul
provided that it is located at a sufficiently small radius. Disturbances can be expected t
increasingly damped as the disc centre is approached. Linear stability results [1, 43, 46]
be used as a guide. Assuming that a suitable selection of the innerrackumsbe made, the
simplest means of constraining the disturbance evolution at the boundary is to impose
values on an appropriate set of perturbation flow variables. For instance, all componen
the perturbation velocity could be set to zero, giving the conditions that

Uu=u=w=0 atr =r;. (57)

Using the definitions (41) and (42) of the secondary varialieandu,, these conditions
can be translated into the following equivalent conditions on the primary variables:

ow
or’
Alternatively, the condition o, may be replaced by a straightforward null-value condition

giving the requirement that all of the primary variables vanish at the inner computatiol
boundary, that is

wy = o =w=0 atr =r;j. (58)

wg =y =w=0 atr =r. (59)

In the numerical simulations, it was found that the results obtained using either conditit
(58) or (59) were virtually identical, provided the inner radial boundary remained sufficien
removed from any source of disturbances.

The choice of boundary conditions at the outer radius of the computational domain rr
allow for the fact that in cases of interest, the boundary will lie in a region where disturban
are unstable. The difficulties this causes are exacerbated when there is strong radially in
influence and temporal disturbance growth. For our simulations, we considered three dis
strategies for dealing with the outer radial boundary. The simplest is to ensure that the c
radial boundary is always kept some distance away from locations where disturbances |
evolved to appreciable amplitudes. Such an approach makes it unnecessary to mods
behavior of disturbances at the outer boundary, but is computationally expensive.

The second strategy depends upon an assumption that the disturbances are wavel
the outer radius, and involves the imposition of conditions of the form

32wy 5 32w ) 32w

— = —a‘wr, = —a‘wy, —=
ar2 ' ar2
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atr = r,. The wavenumbes, which we can allow to be complex-valued to take accoun
of spatial growth, can be set equal to the corresponding eigenvalue determined from lir
stability theory. Since these boundary conditions can be imposed at a radial location wt
the disturbance amplitude is not negligible, the length of the computational domain may
significantly reduced. A similar approach has previously been applied, with some succ
in studies of disturbance evolution in plane channel flow and Blasius flow (see for instal
the works by Fasel [21], Fasel and Konzelmann [23] and Davies and Carpenter [1-
The validity of such wavelike boundary conditions usually depends upon the disturbal
evolution remaining both linear and convective in nature. The first of these requirement
always met in the present numerical studies, since we only use linearized equations.
requirement that the disturbance convect through the outer radial boundary cannot, how:
be so easily satisfied. When nonconvective behavior is anticipated, the simple wave
boundary conditions (60) need to be applied with extreme caution if the disturbance
allowed to reach an appreciable amplitude at the outer radial computational boundary
more detailed discussion of the precautions that were necessary for rotating disc simulat
involving absolute instability can be found in reference [16].) However, for the simulatiol
that we have selected to report in detail in the present paper, the disturbance beh:e
remained purely convective. Under such circumstances, the wavelike conditions (60) w
found to be perfectly adequate. Moreover, they proved to be particularly useful during c«
validation, when they facilated the use of relatively short computational domains.

The third strategy for dealing with the outer radial boundary is to add an outflow buff
region to the computational domain. A variety of different implementations of the buffe
region strategy have been applied in previous studies, for example as described by Bert
et al.[4], Kloker et al.[39] and Liu and Liu [45]. However, the success of such an approac!
no matter how sophisticated in its implementation, can still be expected to depend u
whether or not the disturbances display a convective nature up to the beginning of the bt
region. Thus, in a sense, the buffer-region strategy involves little more than an elabora
of simple wavelike boundary conditions (60). It does, however, have the advantage th:
can more readily cope with nonlinear disturbances and multimodal forms of disturbatr
whose behavior cannot be adequately modelled by simply prescribing a single outfl
wavenumber. Nevertheless, the buffer region is only designed to allow disturbance:
be convected out of the computational domain without spurious reflections. We do |
claim to have undertaken extensive experimentation with the use of buffer regions for ce
where nonconvective behaviour could be discerned, but our few tests suggest that, at
for linearized simulations involving only a single mode of disturbance, there was litt
advantage to be gained over the use of the simpler wavelike boundary conditions.

4. NUMERICAL METHODS

We will describe the numerical methods in the context of the rotating-disc problem, but1
corresponding formulae for Cartesian coordinates should, for the most part, be fairly evidi
We employ a mixed finite-difference/spectral method for the numerical discretization. T
time-derivatives in the two vorticity transport equations (38) and (39) are discretized us
a second-order scheme. For the sake of being definite, we will describe a particular th
point backward-difference scheme found to be robust for the most numerically challeng
configuration that we have considered to date. Namely, the case where part of the
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surface is compliant. For less demanding cases, where the disc’s surface motion c
be simply prescribed, a Crank—Nicholson/Adams—Bashforth type of time-stepping metl
was also implemented. This was more efficient than the method based on a three-|
backward-difference scheme, when interactive calculations of the wall motion were
required. Further details are given in Appendix C.

Variations in the radial direction are discretized using a fourth-order, centered, comf
finite-difference scheme. The wall-normal discretization is based upon a Chebyshev s
representation using the mapped variable introduced in Eq. (36). We will focus our accc
of the numerical methods on features of the Chebyshev discretization that are of partic
interest. It will be shown that is possible to obtain a discretization which is spectra
accurate in the direction, but nevertheless involves only pentadiagonal operators acti
on the Chebyshev expansion coefficients.

4.1. Chebyshev Discretization for the Wall-Normal Variation

Restricting attention to an individual azimuthal mode, the primary variables are expan
in terms of odd Chebyshev polynomials as follows

M

o (r,60,2,t) = {Zwrk«, t) T2k1(C)} e’ (61)
k=1
M .

we(r,0,2,1) = {Zwek(l’, t) Tzk—l(C)} e (62)
k=1
M .

w(r,0,zt) = {Z wi(r, ) Tak-1(¢) } e, (63)
k=1

whereTy is thekth Chebyshev polynomial and e (0, 1] is the mapped wall-normal co-
ordinate defined in Eq. (36). It is acceptable to use only the odd Chebyshev polynom
because our semi-infinite physical domain is mapped on to half of the usual Chebyshev ir
val. We assume, implicitly, that the primary variables and all of their even-grderivatives
vanish for¢ — 0. This will certainly be the case if the disturbances decay exponentially f
Z— oo. (If for some flow variablef we havef ~e=3?for z— oo, wheres > 0, then we
must also havé" f/9¢" — 0 when¢ — O for all values ofn.) The requirement that there
is exponential decay of the disturbances should also be sufficient to ensure the coeffici
in the Chebyshev expansion converge faster than any inverse power of their order [6].
The secondary variables may be expanded in terms of even Chebyshev polynomial

M
U (r,60,2,t) = {;um(r, 0+ Y U (1) T2k<;>} e’ (64)
k=1
1 M .
Up(r,0,z,t) = {éueo(r, )+ > Ug(r, 1) TZK(C)} e’ (65)
k=1

1 M .
w,(r,0,2,1) = {Ea)z()(r, t) + szk(r, t) T2k(g)} e, (66)

k=1
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where we set the zeroth-order expansion coefficientifdo be given by

M
Uro (. 1) = =2 U (r, 1) (=D)¥, (67)

k=1

and similarly forug, (r, t) andw;, (r, t). This ensures that the secondary variables all vanis
for¢ = 0,i.e.forz — oo. Fixing the zeroth-order expansion coefficients in such a fashion
equivalent to expanding the secondary variables using a series of modified even Cheby
polynomialsTay = To — Ta(0).

The Chebyshev expansions for the primary and secondary variables can be substit
into the defining Egs. (41)—(43) for the secondary variables to yield the following tridiagor
relations between the Chebyshev coefficients,

ad
(k - 1)urk,1 + 2kurk + (k + 1)urk+1 =~ <w9k — Woy,, + 8_r(wk - wk+l)) (68)

in
(k — Dug,_, + 2kug, + (K+ Duy,,, =1 (a)rk — Wy — r—(wk — wk+1)> (69)

(K= Dwy,_, + 2Kkwy + K+ Dy, =

(2 (o0 = on)) i~ on,) ).

(70)

I
r

fork =1,..., M, wherel is the stretching factor in Eq. (36) definirgg Details of the
derivation are included in Appendix D. These relations can readily be used to determine
Chebyshev coefficients for the secondary variables from given values of those for the prin
variables. All that is involved is a simple application of the Thomas algorithm. It should |
remarked that the Chebyshev coefficients of the secondary variables are only require
the purposes of computing the convective terms in the vorticity transport equations. Th
involve the linearized quantity

N =08 xu+wxUBE, (71)

whichis treated explicitly, via a predictor-corrector method, in the time-marching procedu
Thus, there is no need to allocate any permanent storage for the secondary variables;
only appear at an intermediate stage in the calculation of the quastitgm specified
values of the primary variables. In fact, the representation of the secondary variables u
Chebyshev coefficients can immediately be exchanged, via an application of a Fast Fol
Transform, for a representation in terms of collocation values. These collocation values
then be utilised in the pseudospectral evaluation of the mean-flow produdts in

Before discussing the discretization of the governing equations we note that the inte
conditions, (49) and (50), placed on the primary variables can be cast in the forms

M r M 3wk
> Pawn, = gF'On=> P~ (72)
k=1 =1 r

M Mo
" inu
; Pxowr, = _EG O)n+ ; P (73)
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for fixed constantgy. These constraints on the primary-variable Chebyshev coefficier
may be interpreted as discretized versions of the linearized no-slip conditions for the
turbances. The constangg can be computed by extending the argument used to deri
the tridiagonal relations (68)—(70). More details are given in Appendix D. The bounde
condition (48c) orw can be discretized in a more straightforward manner to yield

M 8?)
> g =, (74)

k=1

wheregx = Tx_1(1) = 1 and the wall-displacement amplitugeis” defined by writing
n(r,0,z,t) =i,z t)en’.

The governing equations (38)—(40) are integrated twice with respect to the mapped \
able¢. This removes the-derivative operators and replaces them witimtegral operators.
Such a procedure is adopted because the integral operators take a very convenient
which facilitates the employment of an efficient line iteration along the radial directio
The integrated equations may be written as

d i 0 1
[+ )] I

ot ar I

T K I
|{a§:9 8NZ+2A<wr——w>}—i—LJNr

El e I

{in 18(rw9)}
l|—aor — - ,

r oar

(77)

where the integral operatorsJ, andK are defined by

¢ rl
1£(0) = / / F(c"yde' de”

¢ ¢ g
Jf(:)=/ ;’Zf(c’)dz/—zf/ ¢"f (") de’ de”
4 ¢ 3 ¢ 2
Kf@)=¢ f(;)—G/ ¢’ f(§/>d;’+6// ¢"f (" d¢’de”,
and, using the assumed form of the azimuthal variation,

@Zf_ﬁ 1ﬂ_nj

arz rar r2

for any functionf. When they are applied to an appropriate Chebyshev series, the integ
operators can be represented by banded matrices that are, at most, pentadiagonal, exc
the lowest-order terms. For instance, the integral opelatots on series of odd Chebyshev
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polynomials in the following tridiagonal manner

M
| Z fkToker=aTo+bTy
k=1
M+1

L fis fi fii1
i ; 8 ((Zk —Dk-1 (k—1k T 2k — 1)k>T2k‘l’ (78)

where the arbitrary integration constaat® arise from the double indefinite integration. A
similar, but pentadiagonal, representation can be obtained for the opiérakbe integral
operatord, which acts on the series of even Chebyshev polynomials used to approxim
the quantitiedN, andN;, can be represented by a matrix with a bandwidth of four.

Substituting the Chebyshev series for the primary variables into the integrated goverr
equations and then matching the coefficient3gf, fork =2, ..., M leads to a system
of 3(M — 1) partial differential equations for theMd unknowns{wr, , wg,, wi}. The three
equations that would have been obtained by matching the coefficients of the lowest-ol
odd polynomialT; can be dispensed with because they only serve to introduce additiol
unknowns in the form of integration functions. They are replaced by the conditions giv
in Egs. (72)—(74) corresponding to the wall boundary conditions for the fluid disturban
velocity components, the no-slip conditions having first been formulated as the equival
integral constraints on the vorticity. We then obtain a set\fifartial differential equations
for the 3V unknown Chebyshev coefficients of the primary variables. This procedure m
be classified as a form of the tau-method.

4.2. Temporal and Radial Discretization

Using the notation
fl = f|t=IAt

the three-point, backward-difference, time discretization takes the form

af\' 1
(E) =E(3f'—4f'—l+f'—2). (79)

The time-stepping is performed using a predictor-corrector scheme for the convective te
in the integrated vorticity transport equations. The Coriolis terms in the transport equati
may be dealt with eitherimplicitly or by applying the same predictor-corrector thatis used 1
the convective terms. The predictor-corrector method can also be chosen for some sele
viscous terms arising from the use of a non-Cartesian coordinate system. The remai
viscous terms, which involve double indefinjténtegrals of second-order derivatives along
each of the, 6, z coordinate directions, can all be treated implicitly. The Poisson equatic
for w and all of the boundary conditions, including the integral constraints on the vortici
are also applied in an implicit manner. (In what follows we will assume, for the sake of bei
definite, that the Coriolis terms and selected viscous terms are computed using a predi
corrector. The modifications required for an implicit treatment of all but the convecti
terms would introduce only marginal differences in the computational cost.)
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The predictor step for the convective terms, which requires the evaluation of the quar
N, is specified by setting

(NHP = 2Nt —N'-?
=28 x U T+ Wt x UB) — QB x U2+ w2 x UB), (80)

while the corrector step is defined by
(ND® = NP, (") =08 x U)HP + (WP x U, (81)

where (u")P, (w'")P are the disturbance velocity and vorticity fields determined from th
predictor stage. This time stepping process involves two evaluations of the undisturk
flow product terms per time step. In addition, because of the implicit treatment of some
the remaining terms in the governing equations, there is a large system of linear equat
that must be solved twice per time step. As mentioned previously, the products involv
undisturbed-flow quantities are calculated in a pseudospectral manner using a Fast Fc
Transform to convert between Chebyshev series coefficients and collocation valwesand
versa When the predictor-corrector employed for the convective terms is also applied
the Coriolis terms and appropriately selected viscous terms, the relevant Chebyshev s
coefficients can be evaluated directly without resort to any transformation.

The Crank—Nicholson method, used in conjunction with an Adams—Bashforth treatm
of the convective terms, might appear atfirst sight to be a more obvious, less computatior
expensive, choice for the time-stepping procedure. However, on the basis of our prev
experience [14] we expected a backward-difference method to perform more robustly, |
ticularly when there is interactive wall-motion. The advantages of such time-stepping p
cedures have also been documented in other circumstances where there is motion at
boundary (see, for example, [5]). Nevertheless, we make no claim that the particular ti
stepping procedure that we have elected to describe here in detail has been optimizec
simulations that did not involve any interactively coupled wall motion, improvements to tl
efficiency of the numerical scheme were readily made by treating more terms in an exp
manner and adopting a modified predictor-corrector method. (As was mentioned ear
further details of the alternative time-stepping procedure can be found in Appendix C.)

Introducing the notation

|
f; = fklr=jart=iat,

where, as before, the suffixis used to denote a Chebyshev series coefficient, the di
cretization of the governing equations can be completed by approximating the ra
derivatives using compact, fourth-order, centered, finite-difference schemes of the ger

form:
<af'> +(af'> N (af')
o — - ol —
ar Kj-1 ar ki ar K j+1

_2a+2 ( fieja — fd,i—l) Mtk ( fjro _rf'l’j_2>, (82)

3 2Ar 3 4N
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3 (Ar)2 3 4(Ar)?
(83)

In principle, the parameteks, 8 can be freely chosen. The choices= 1/4, 8 = 1/10
minimize the stencil of discrete radial locations involved in the computation of the first al
second derivatives. Most of our computations were performed using these values. Se
a = B allows both first- and second-order radial derivatives to be completely eliminat
from the fully discretized governing equations, which is more convenient when compu
storage is at a premium. We conducted a few simulationsavithg = 1/10 and obtained
results that were virtually identical to those obtained with- 1/4, 8 = 1/10.

The finite-difference approximations for the radial derivatives may be employed togett
with the temporal discretization to obtain discretized versions of the partial different
equations for the primary-variable Chebyshev coefficients discussed in Section 4.1.
full set of 3M partial differential equations contains three subsetsl@&quations that are
associated, in turn, with the two vorticity transport equations and the Poisson equation
w. The first equation in eadi -equation subset is chosen to be the condition that enforce
the appropriate boundary condition on the fluid perturbation velocity at the wall, while tl
remainingM — 1 equations are obtained directly from the integrated governing equatic
Using the notation

I I | I \T
FJ = (fl,j’ fz,j""’ fM,j) N
for vectors of Chebyshev coefficients, the fully discretized governing equations can
written in the forms

S =B} +C

I’J’

Sj QIOJ = Blej + C91’ TJWIJ' = Ble’ (84)

where{ﬂr] , 9] , WI } represent the Chebyshev vectors of the primary varlabj,esl)g, w}
ands;, T; areM x M matrices. The vectcB' is a simple linear function of vectof),; for
i # | and the vectoW' the latter being mvolved because the integral constramt couplin
wr andw is mcorporated as the first component of the vector equation. The veB‘,;grs
B' are specified in a similar manner; the former can be computed using vectors ot
thanQ ; and the latter computed from vectors other wup In the two fully discretized
vort|C|ty transport equations, the vectd$J andC collect together quantities which
can be calculated explicitly using the primary- varlable vector values from the previo
two time steps and, in the corrector stage of the time stepping, from the primary-varia
vectors computed during the predictor stage. There is no corresponding vector in the f
discretized Poisson equation fiotbecause the equation is treated in a fully implicit fashion
The matricesS;, T; are pentadiagonal except for their first rows. This pentadiagon
structure is the consequence of our choosing to realeivative operators by-integral
operators for the purposes of the Chebyshev discretization. The first rows of the matr
are used to incorporate the perturbation velocity boundary conditions at the wall. It sho
be recalled that the conditions to be imposed on the primary varidblesy, w} were
stated in Egs. (72)—(74). Because the coefficigntx appearing in these condition are
nonzero fok = 1, ... M, the first rows of the matric8;, T; are full.
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It may be seen that the fully-discretized equations (84), have been cast in a form-
is well-suited for efficient solution by means of a line iteration along the radial directio
The inversions required to obtain estimates for each of the primary-variable Chebys
vectors{ﬂrJ , Q'gj , W'j} at a given radial location, using previous estimates for the vecto
at locations that are radially inward and outward from the given location, can be perforn
by employing a pentadiagonal equation solver that is modified to take account of the
first rows of the matrice§;, T;.

4.3. Numerical Solution for the Compliant-Wall Motion

When an annular region of the wall is compliant (see Fig. 3), values of the wall displa
ment must be supplied to specify the boundary conditions for the fluid motion. In order
obtain a stable numerical scheme, the equation of motion (55) for the wall must be re
in form

ad o ~o
at(mws—i—/ de)—l—dws—i-BVszn—l-Kn
0

0(rwg) Oy
___/ {rF—+(G+ Do+ ( - 89)}(1; (85)

where boundary condition (48c) has been used and we have substituted the expressior
for the fluid perturbation pressure at the wall. Equation (85) can be viewed as an evolu
equation for the total wall-normal momentum defined by

M:mws—i—/ wdz (86)
0

The compliant-wall and hydrodynamic momenta are combined in order to avoid the do
nation of one over the other when they are included in the radial line iteration outlined
Section 4.2. When this is not done, the iteration can fail to converge. The details of h
the reformulated equation of motion for the compliant wall may be employed to derive
numerically stable coupling between the wall and the fluid are similar to those that w
presented in [14], to which the interested reader should refer. For present purposes it suf
to note two important features. First, the fully-discretized boundary conditiow foray

be implemented in the modified form

M
> i pot g wy = @, (87)

k=1

wherey; is defined in terms of the wall parameters and the discretization constants. (°
coefficientspy, gk« which are used, respectively, to evaluatet the wall and its integral
across the boundary layer, were defined in Section 4.1.) The vamﬁbhppearlng on
the right-hand side of (87) can be calculated using vectors other\lsﬁaﬁ'hus it may
determined within the radial line-iteration procedure. Secondly, we note that the fully d
cretized version of the unmodified boundary conditiorugnvhich was stated in a partially
discretized form in Eq. (74), may be written as

ﬁlj =-(4 ﬁ'{l - ﬁljiz) + = Z kalj,k (88)

Wl



146 DAVIES AND CARPENTER

where

Al ~
Mj = Nlr=jart=lat-

This can be used to determine the wall displacement amplifudieat must be known
in order to impose the integral constraints on the vorticity, when the boundary conditi
applied directly tow is cast in the form (87).

5. SIMULATION RESULTS FOR CONVECTIVE DISTURBANCES
IN THE ROTATING-DISC BOUNDARY LAYER

5.1. Stationary Disturbances and Code Validation

We undertook extensive validation of our computer code through simulations of t
disturbances in the rotating-disc boundary layer. Initially, the governing equations w
“parallelized” (i.e., slow radial change was neglected) so that direct comparisons coulc
made with results from previous linear-stability studies [12, 46—48]. The “parallelizatiol
was achieved by neglecting the radial dependence of the coefficients which multiply
differential operators appearing in the governing equations (38)—(40) and the definiti
(41)—(43) of the secondary variables. All the coefficients were set to constant values
simply substituting the fixed Reynolds numbfor the variable radius.

Radial wavenumbers and growth rates determined from the “parallelized” numeri
simulations were compared with corresponding eigenvalues determined from the lin
stability theory of previous investigators. (The specific form of the sixth-order syste
of ordinary differential equations, and the numerical method used for their solution, @
described in reference [12]). Good agreement was found over a range of Reynolds num
for a variety of stationary and time-periodic forms of disturbance, including both Type
and Type Il instabilities.

Comparisons were also made for numerical simulations based on the complete linear
Navier—Stokes equations. It was found that locally defined radial wavenumbers and gro
rates computed from the numerical simulations could be well-predicted using the eigen
ues obtained from standard, (i.e., quasi-parallel), linear stability theory. This is illustra
in Fig. 4, which shows radial wavenumbers and growth rates for the case of a station
disturbance with azimuthal mode numimet 32. (This is the most strongly growing eigen-
mode.) In the numerical simulations, the disturbance was excited by introducing bumps
the wall in the manner described in Section 3.3. The maximum wall displacement v
located at = 350. Locally defined, complex, radial wavenumbers: o; + i could be
computed using the simulation data by setting

) 19%A

@t =g (89)
where A is the complex amplitude of some selected flow-field variable. For the resu
presented in Fig. 4, the complex radial wavenumber was calculated using the amplitud
the integral ofwy across the boundary layer. It can be seen that, away from radial locatic
close to where the wall deformation is greatest, the radial wavenumbers and growth r.
agree well with standard linear stability theory. The oscillations in the curves re&@50
are a reflection of near-field effects in the simulations; the disturbance only has a w
defined complex radial wavenumber at a sufficient radial distance from its source.
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FIG. 4. Radial wavenumbers, and radial growth rateg; for a stationary disturbance with azimuthal
wavenumbemn = 32. The solid curves were determind by solving, for each of the Reynolds number over t
range of radii, the eigenvalue problem derived by applying the parallel-flow approximation. The dotted cur
correspond to locally calculated complex radial wavenumbers obtained directly from numerical simulation d:

The numerical-resolution requirements for the simulations were established by under

ing extensive and detailed, grid-refinement studies. It was found that, typically, the variat
of the primary perturbation variables, wg, w across the boundary layer in thealirection,
could be fully resolved using a Chebyshev expansion involving 48 polynomials. The rac
resolution was selected to give at least 24 points per wavelength, which usually translate
taking a radial incrementr ~ 1. The temporal resolution was dictated by the convergenc
demands of the line-iteration scheme used to solve the set of implicit equations obtal
at each time step, rather than by accuracy requirements. Typically, the need to obte
converged solution led to a choice of time incremant~ Ar that was sufficient for full
resolution of the temporal evolution when the Reynolds nunfbers O(10°) or less. (It
should be noted that, with the specified nondimensionalization, the Reynolds numbe
equal to the value of the dimensionless radial coordinate at the inner radius of the ¢
putational domain.) The nondimensional rotation peffoébr the disc is equal to2R.
Thus, it may be seen that our typical choice of time-increment was suchtjdt ~ 1073,
In addition, as has mentioned above, the effects of the positions of the inner and o
computational radial boundaries were carefully monitored. For most of the simulatio
the computational domain extended well beyond the limits suggested by the figures L
to illustrate the behavior of physical interest. For example, the perturbation velocity fie
for the time-periodic Type | disturbances considered at beginning of the next section
displayed for 375< r < 525, whereas the simulations were actually conducted using
computational domain with 258 r < 950.

5.2. Nonstationary Type | and Il Disturbances

In order to further illustrate the utility of our numerical simulation method, we provid
a brief description of results for the radial evolution of Type | and Type Il travelling-wav
disturbances. Both types of disturbance were excited by prescribing a radially localiz
time-periodic, wall displacement, with a nondimensional frequetBy The form of the
wall motion used for the excitation was described in Section 3.3.
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(a) radial perturbation velocity
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FIG.5. Perturbation velocity contours fora Type | disturbance with 43and8 R = —8, excited by localized
disk surface motion centredrat= 400. The contours are drawn at levgl&2™ form =0, 1..., N, whereAis an
arbitary normalization factor and defines the contour level corresponding to the largest disturbance magnitude
The normalization remains the same for each of the plotted perturbation velocity components but the Malue
varies: (au,; N = 11, (b)us; N = 12, (c)w; N = 8. Thus, thez-component of the perturbation velocity can be
seen to be an order of magnitude smaller than the other two components.

Figure 5 displays perturbation velocity contours, at a particular instant of time anc
fixed value of the azimuthal angle, for a Type | disturbance with azimuthal mode numt
n = 43. The disturbance was excited by setting the nondimensional wall-motion frequel
BR = —8. The forcing was centred aR = 400. Both then and 8 R were chosen so that,
according to standard linear stability theory, the radial growth rate would be as large
possible at radial locations close to excitation. The pronounced radial growth experien
by the disturbance can be inferred from the contour plots upon noting the logarithmic sc
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{a) Type | disturbances
T

FIG. 6. Perturbation azimuthal vorticity, at the disk surface (solid lines), together with corresponding
envelopest |wy | (broken lines), for Type | and Type Il disturbances exicted at 400. (a)n = 43 and8R = —8
(b) n =5 andBR = 7.9 The amplitudes are normalized so that, in both casgss O(1) at locations near to
where the disturbances are generated.

used to define the contour levels. This radial growth can also be discerned, more rea
from Fig. 6a, which displays the radial variationf at the disc surface. The time instant
and the azimuthal orientation are the same as for Fig. 5. Figure 6b shows the correspor
result for the Type Il disturbance, which, according to the standard linear stability thec
should undergo maximal radial growth at the chosen radial locagien400. In this case,
n=5and8R = 7.9. ltcan be seenthat, as expected from previous studies, the radial gro
of the Type Il disturbance is much weaker than that exhibited by the Type | disturban
In particular, it should be noted that the amplitude of the localized wall motion, used
excitation, has been normalized in a commensurable fashion for both types of disturba
Thus, the large differences between the magnitudes of the perturbation vorticities, at re
locations away from the source of excitation, reflect the disparity between the radial gro
rates of the two disturbance types. The difference in the radial growth rate is also appa
from the contour plots given in Fig. 7. By making a comparison with Fig. 5, it can be se
that the two types of disturbance also differ in other respects. For instance, there is a ma
contrast between the radial wavelengths. There are also differences in the distance a
the disc surface where the perturbation velocities achieve their maxima.

5.3. The Effects of Wall Compliance

The different characters of the Type | and Type Il disturbances remained evident w|
simulations were conducted for configurations where a compliant annulus was inse
in the rotating-disc surface, as shown in Fig. 3. Figure 8 illustrates the stabilizing effi
on Type | disturbances of having such a compliant insert betwee®50 and 500. The
figure shows the instantaneous radial variation of the wall pressure, at a fixed azimu
angle for a case where the disc surface was taken to be entirely rigid, compared \
a corresponding case where there was a compliant insert. The wall displacement is
plotted. As before, the disturbance was excited by time-periodic wall motion centered
r = 400. It is clear that wall compliance leads to a significant reduction in the disturbar
growth in the radial direction, even though the compliant annulus extends for less than
disturbance wavelengths. Thisis in accordance with the results of the standard linear stal
of Cooper and Carpenter [12] for compliant walls in the form of a single layer of elastome
material, the dynamics of which were modelled using modified Navier equations.

The wall parametersn, B, K defining our simpler spring-backed-plate model were
selected so that no flow-induced surface instabilities would be expected over the rang
radii considered. (It should be recalled from Section 3.4 a8, K are, respectively, the
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(a) radial perturbation velocity
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FIG. 7. Perurbation velocity contours for a Type Il disturbance witk 5 andgR = 7.9, exited by localised
disk surface motion centered mt= 400. The contours are drawn at level\2™ for m=0,1..., N, in the
same manner as in Fig. 5. @) N = 6, (b)u,; N =7, (c)w; N =5.

nondimensional areal density, flexural rigidity, and spring stiffness for the compliant wal
Crude estimates for the onset velocities of flow-induced surface instabilities were derivec
modelling the undisturbed vondffméan flow as a uniform rotational flow and then assuming
that established results for the case of uniform uni-directional flow over a compliant pl:
[10] could be applied in a localized manner. Such a procedure leads to two restrictions
the choice of the nondimensional wall parameters, each of which gives a recipe for
avoidance of a distinct mode of flow-induced surface instability. These restrictions can tl
be applied to choose the wall parameters to make the compliant annulus as soft as pos
without introducing any flow-induced surface instability. When such a choice is made, 1
wall parametersn, B, K can all be specified in terms of a single critical wavenumbe
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FIG. 8. Instantaneous surface displacements and perturbation pressures at the disk surface for a T
disturbance wittn = 43 and8R = —8 exicted at = 400. (i) Pressure for an entirely rigid disk, (ii) pressure at
the same time instant in the periodic forcing cycle when there is a compliant annulus which extends-f50
tor = 500, (iii) corresponding compliant surface displacements. The surface compliance parameters are suct
notionally, there is marginal stability with respect to divergence and travelling wave flutter forms of disturbar
at the outermost radius of the annulus. The critical wavenumber for the compliant sudace 2.

defined by

e = (%) ’ . (90)

The compliant part of the disc surface would only be expected to give rise to signific:
stabilizing effects on Type | disturbances whenis selected so as to be comparable with
the wavenumbers of the most unstable Type | disturbances. Accordingly, we s€0.2

for the simulation presented here. (For a more detailed discussion of these matters, ir
context of plane channel flow between compliant walls, the interested reader should r
to [15].)

Simulations were also conducted to investigate the effect of wall compliance on Typ
disturbances. The changes identified in the radial growth rates were negligible when
wall parameters were selected in the above manner. This null result concurs with the v
of Cooper and Carpenter [12], who found that the modification of Type Il disturbanc
resulting from wall compliance was rather weak, compared with Type | disturbances.

5.4. Algebraic Radial Growth

Modal coalescence between Type | and Type Il disturbances has been studied, inde
dently, by Lingwood [43], Cooper and Carpenter [12], and Turkyilmazoglu and Gajjar [5¢
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The standard linear stability analysis carried out by these previous investigators predi
that modal coalescence would first occuRat= 437 for a temporal frequengy = 0.0061
and an azimuthal wavenumber giveniyyR = 0.041 (which, it should be noted, actually
corresponds to an unphysical noninteger valuen ef 17.9). They found that the coa-
lesced eigenmode was convectively stable at its onset Reynolds number. Examinatic
the solution branches for the spatio-temporal eigenvalue problem also established tha
modal coalescence did not give rise to an absolute instability. There remained the intel
ing possibility that the coalesced eigenmode could exhibit prolonged algebraic growth [4
However, upon closer scrutiny, the physical significance of any such algebraic growth mi
appear to be rather limited. Quasi-parallel linear stability theory predicts that, at abov
Reynolds numbeR >~ 439, which is only very slightly higher than the Reynolds numbe
of R = 437 corresponding to the onset of modal coalescence, the coalesced mode bec
convectively unstable. Thus, when the slow radial variation is properly accounted for
is likely that any algebraic radial growth would be eclipsed by exponential radial grow
over a relatively short radial distance. Notwithstanding this, there is still some purpose
be achieved from a brief study of disturbance development when modal coalescenc
expected. Numerical simulations can be used to examine the effects of “nonparallelis
and to verify that algebraic radial growth does, in fact, occur within the framework of tt
“parallel-flow” approximation. Moreover, the successful identification of algebraic radi:
growth in simulations conducted with “parallelized” governing equations can be viewed
providing an additional stringent validation for the computer code.

Figure 9 displays “parallelized” numerical simulation results for the radial variatio
of wy at the wall for the case of a time-periodic disturbance at the predicted onset
modal coalescenc® = 437. A cursory inspection suggests that the disturbance is subije
to algebraic growth, rather than the exponential decay expected in the absence of m
coalescence. Stronger confirmation of the predictions of the quasi-parallel linear stab
theory of Cooper and Carpenter can be inferred from the excellent fit to the simulation ¢

-2
400 450 550 €00

500
r (arbitrary origin)

FIG. 9. Instantaneous azimuthal vorticigy at the surface of a rigid disk for the modal coalescence involving
the Type | and Type Il forms of disturbancB.= 437,n/R = 0.041 andB = 0.0061. (i) Numerical simulation
results obtained with the parallel-flow approximation applied to the fluid governing equations, (ii) data-fit usi
a functionQ(r) = (r —re) R{Ad*"~"®}, wherer, locates the time-periodic forcing is a fixed complex con-

stant andr = 0.185+ 0.0015 is the complex radial wavenumber. (Note that, owing to use of the parallel-flov
approximation, the origin of the radial co-ordinate system is arbitrary.)
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that is shown for a function of the form
Q) = (r —re)R{A* 1 forr >re, (91)

wherer, defines the innermost radial location at which there is time-periodic forcing. Tl
termAis acomplex constant that fixes the arbitrary phase and amplitudeiatite complex
radial wavenumber. The value = 0.185+ 0.0015i selected for the wavenumber was
determined, independently of the results of the numerical simulation, using the quasi-par
linear stability theory for the specified azimuthal wavenumid® = 0.041 and temporal
frequencys = 0.0061. It can be seen from Fig. 9 that deviations between the fitted functi
and the simulation data are only found in the immediate vicinity of the locations whe
time-periodic wall motion is used to generate the disturbance. They can thus be discou
as being attributable to near-field effects. It should be noted that the disturbance would |
slowly decayed, over a radial lengthscajerl~ 1C® if algebraic growth were absent.

The effects on the modal coalescence of using the complete linearized Navier—Stc
equations are illustrated in Fig. 10. Radial distributions otdéh@mplitudes are plotted for
numerical simulations conducted with and without the use of the “parallel flow” appro»
mation. The time-periodic forcing used to excite the disturbance was applied in the sc
manner with the same normalization, in both cases. An amplitude distribution fitted us
the eigenvaluer determined from the standard linear stability theory is also displayed.
order to facilitate comparisons, a slight geometric inconsistency is accommodated for
“nonparallel” case. The azimuthal mode numbés permitted to be noninteger valued, just
as before. (Similar results were obtained from other simulations for whieds, more cor-
rectly, taken to be an integer.) Inspection of the plotted simulation data suggests that t
is still a region of algebraic radial growth when the complete linearized Navier—Stok
equations are used. However, in so far as it can be identified with any precision, the re
of algebraic growth does not appear to extend very far beyond the source of the disturbe
It can also be seen that, close to the source of the disturbance, the radial growth appe:
be slightly weaker than for standard linear theory. As expected, the algebraic growth gi
way to exponential radial growth, when convective instability sets in further outboard.
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FIG. 10. Azimuthal vorticity amplitudew, | at the surface of a rigid disk for the modal coalescence involving
the Type | and Type Il forms of disturband® = 437, n/R = 0.041 and8 = 0.0061. Simulation results obtained
with (i) the parallel-flow approximation, (ii) nonparallel mean flow effects included. (iii) Data-fit using a func
tion |Q(r)| = (r —re)|Ale @i "~'® whereq; = 0.0015 is the imaginary part of the complex radial wavenumber
obtained from the solution of the parallel-flow linear stability eigenvalue probighocates the time-periodic
forcing andA is a fixed constant.
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6. CONCLUSIONS

We have described a new velocity—vorticity formulation of the unsteady thre
dimensional Navier—Stokes equations. The approach is designed to be suitable for sim
ing the evolution of three-dimensional disturbances in boundary-layer flows, particula
for flow-control applications. It is assumed that the undisturbed flow field is known. (£
shown in Appendix A, this is not an essential assumption.) Accordingly, only perturbatio
to this known flow field are calculated. In general, the perturbations are of finite amplituc
A key advantage of the formulation is that otyeegoverning equations for three primary
dependent variables are required. The three primary variables are the perturbations t
wall-normal velocity component and to the two vorticity components in the plane of tf
wall. The secondary variables are the perturbations to the remaining velocity and vortic
components and, for some applications, the pressure. These are defined explicitly in te
of the primary variables. We show that, providing the primary variables can be made
satisfy certain fairly weak conditions as— oo, our formulation is fully equivalent to the
Navier—Stokes equations in primitive-variable form.

For our formulation, only three dependent variables need to be computed and stored.
contrasts favourably to previous three-dimensional, velocity—vorticity formulations (e.t
Fasel and his coworkers) which require all six velocity and vorticity components to be
mary variables. Our approach even offers advantage compared with the primitive-vari
formulation with its four dependent variables. Thus, since our formulation only emplo
three flow-field variables and three governing equations, it offers considerable scope
improvements in algorithm design and computational times in applications involving ¢
rect numerical simulations of boundary-layer disturbances. Another important advant
offered by our approach lies in the treatment of the constraints placed on vorticity. The
parent need for vorticity boundary conditions has been problematic with previous veloci
vorticity methods. We show that the wall boundary conditions placed on velocity may
linked to vorticity through integral constraints. Such an approach ensures solenoidal ve
ity and vorticity fields and provides a simple and rigorous alternative to vorticity bounda
conditions.

The numerical methods were presented in the context of application to the thr
dimensional boundary layer over a rotating disc. However, the corresponding methodol
for a Cartesian coordinate system should, for the most part, be fairly evident. Our schem
discretization employs spectral expansionsin the wall-normal and azithmuthal (or spanw
directions and compact finite differences in the radial (or streamwise) direction. Discreti
tion in time takes the form of a three-point, backward-difference scheme. Time steppin
based on a predictor-corrector scheme for the convective terms. For the application tc
rotating disc, but not for those using Cartesian coordinates, the predictor-corrector scher
also used for the Coriolis and some viscous terms. The remaining viscous terms (all visc
terms in applications based on Cartesian coordinates) can be treated implicitly. It is sh
that we can retain an efficient line-iteration scheme, similar to that used by Fasel [21] :
in his later papers, but with the added advantage of spectral convergence in the wall-nol
direction. (For simulations that do not involve any interactive wall motion, the line-iteratic
scheme can be simplified. The radial line iteration used to determine the vorticity may
replaced by a more direct, radial line-marching procedure as described in Appendix C.

For some of the applications reported above we have used a compliant wall. Wall cc
pliance is, of course, a passive method of flow control. Nevertheless, computationally i



VELOCITY-VORTICITY FORMULATION 155

much more challenging than active boundary-layer control methods such as suction
blowing or the use of MEMS- or micro-actuators. In such cases, the wall boundary c
ditions are normally specified priori. Whereas for a compliant wall, the calculation of
wall and flow dynamics must be carried out interactively. In such circumstances, it can
difficult to achieve a stable numerical scheme. In our previous work [14] on the simulati
of the development of two-dimensional boundary-layer disturbances over compliant we
we overcame the problem of achieving a stable scheme by combining the flow and \
momenta as, effectively, a single variable. In the present paper, we show how this appre
can be extended to the three-dimensional case.

The applications presented in the present paper concern convective disturbances d
oping in the boundary layer over a rotating disc. (Investigations of absolute instabilities
the same system will be reported in a separate paper. A preliminary account is givel
reference [16].) The simulations are restricted to small-amplitude disturbances for wh
the governing equations can be linearized. This permits us to decouple the azimuthal mi
and compute them separately, thereby making the simulations much less computatiol
expensive. It also allows us to validate the methods by comparison with known results fi
standard linear stability analysis. We excite the most unstable stationary Type | instab
by introducing small-amplitude bumps on the disc surface. Good agreement is found \
previous linear-stability results. In our standard formulation, we use the full linearized gc
erning equations without suppressing the slow radial variation of the disturbances. In f
we find that the results are not greatly different from the standard, “parallel-flow,” line
stability theory which omits the slow radial variation. This is in accord with the PSE r
sults of Malik and Balakumar [47]. We have also studied the travelling forms of the Typ
and Type Il instabilities over rigid and compliant walls. Finally, we simulated the ca:
where the standard, linear, stability theory predicts a coalescence between Types | a
eigenmodes. Theory suggests that, even though the disturbances are convectively s
coalescence implies localized algebraic growth. This is confirmed by the “parallelize
simulations. When the full linearized governing equations were used, localized algeb
growth was still observed, but exponentially growing convective instability set in at slight
more outboard locations and soon dominated the algebraic growth.

The present application for the rotating disc has been restricted to small-amplitude
turbances and only linearized governing equations were used. It is not too difficult to :
how the scheme could be generalized to allow the simulation of nonlinear finite-amplitt
disturbances. In this case, the nonlinear terms introduce coupling between the var
azimuthal modes and we would be unable to compute them separately. However, if, like
convective terms in the linearized case, the nonlinear terms were treated explicitly wit
the time-marching procedure, essentially the same line-iteration process could be use
the nonlinear computations. The main difference would be the need to repeat the radial |
iteration solution procedure for every resolved azimuthal mode, possibly using some f
of parallel processing. The nonlinear terms would only generate quantities which remai
fixed within the radial line iteration undertaken for each time step, in much the same man
as was described for the convective terms in the linearized case.

We end by briefly mentioning some of the further applications of the new velocity
vorticity formulation that have been made to date. This serves to emphasize the fact tha
utility of the formulation is by no means restricted to the rotating disc flow that we consider
in detail in the present paper. For example, the linearized version of the governing equat
has been used to simulate interactions between MEMS actuators and various form



156 DAVIES AND CARPENTER

small-amplitude three-dimensional disturbances developing in the Blasius boundary |
and other laminar boundary layers. These simulations were conducted using essentiall
same numerical scheme as described in the present paper. The only significant change,
from the incorporation of MEMS devices and some new methods of disturbance generat
was that a Cartesian coordinate system was used, instead of the cylindrical polar coordir
that were more appropriate for the rotating disc. Careful code validation was undertak
in the same manner as for the simulations reported in the present paper. In particular
found that it was possible to reproduce standard linear stability results for both two- ¢
three-dimensional disturbances developing within the boundary layer. We were also «
to undertake more demanding simulations that involved the development of disturbar
that extended out beyond the boundary layer and into the free-stream. More details ca
found in reference [11].

In addition to studies conducted for three-dimensional linear disturbances, we have
dertaken some simulations of two-dimensional, fully nonlinear, disturbance developm
in Blasius flow [34]. (A short account of the two-dimensional restriction of the velocity.
vorticity formulation is given in Appendix E.) The disturbance evolution was investigate
both with and without the use of the parallel flow approximation. Good agreement w
found with the behavior predicted by large Reynolds number asymptotic theories. Mo
over, the numerical simulation code remained robust even when the Reynolds number, b
on displacement thickness, was taken to be in excess®of 10

A two-dimensional version of our velocity—vorticity formulation has also been use
to compute the steady wake flow near the trailing edge of an aligned flat plate. For t
inherently nonlinear computation, the vorticity integral constraint used to impose no-s
along the surface of the plate was replaced by a center-line symmetry condition within
wake itself. The computed steady flow was found to develop, along the streamwise direct
in precisely the manner predicted by triple-deck asymptotic theory (see, for example, [3!

APPENDIX A

Velocity—Vorticity Formulation for the Total Flow and for Finite Domains

For the present study of the rotating-disc boundary layer, the undisturbed flow can
determined directly from the solution of a set of ordinary differential equations [55]. Thu
there would be little interest in using our formulation to determine the undisturbed flo
This may not be the case for other potential applications. We will now describe how c
formulation may be modified to deal with the undisturbed flow or, more generally, with tt
total flow. If we setU® = QB = 0 in the decomposition defined in Egs. (6a) and (6b) thel
the total velocity and vorticity field), © are identical with the fields previously taken to be
perturbations, and the definition of the convective quamityecomes

N=QxU.

If, in order to conform with the notation used in the main text, we take the componet
of U = (u, v, w) andQ = (wx, wy, @), the three governing equations (7)—(9) can now be
interpreted as equations for the total-flow primary variables. It remains to specify the tof
flow secondary variablesl, v, w;} in terms of the primary variables. Allowing for the fact
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thatU may no longer vanish far — oo, we set

whereu_, v_ are the prescribed velocity componentsZoer co and

ou. U

Y T % T oy

For example, for a zero-pressure gradient flow over a flat plate we would simply have

The argument used to recover the primitive-variables form of the Navier—Stokes equati
for the perturbation flow fields can be reapplied to the case of the total flow fields. The o
difference is thatthe conditions which must be imposed on the primary variablesfoso,
in order to recover the incompressibility constraint and zZkeomponent of the vorticity
transport equation, both take a slightly more complicated form. For instance, it is neces:
to ensure that
a—w — _<8u_oo+8v_oo> forz — oo
a9z ax ay

in order to obtain the incompressibility constraint.

Itis of interest to note that the formulation could, in principle, be extended to cases wh
there is an upper boundaryzt= L. This would involve replacing the— oo upper limit by
z = L inthe integrals defining the secondary variables. It would also be necessary to img
the incompressibility constraint and teecomponent of the vorticity transport equation at
the locatiorz = L. For example, if there were a rigid stationary boundary located-at.
(wherelL is constant), then the definitions of secondary variables would be given by

y
L dwyx  dwy
wz :/ + —|dz
7 X ay
while the conditions to be imposedat L would take the simple form

d 10 /0 d
w 10 (dox  day\ .
3z Raz\ ax = ay




158 DAVIES AND CARPENTER

APPENDIX B

Coordinate Mapping for the Case of a Nonplanar Boundary

The system of equations that comprises the new velocity—vorticity formulation is fir
described in the main part of the text for a general configuration where there is a bounc
surface located & = (X, y, t). However, for the specific application that is considered ir
detail, namely the evolution of small-amplitude disturbances in the rotating disk bound:
layer, a linearization is performed, giving boundary conditions that are applieg & In
this section we provide a brief account of how the velocity—vorticity formulation, includin
the boundary conditions, can be implemented in a computationally convenient fashion w
the flow boundary is taken to be more genuinely nonplanar and when it is not appropr
to apply any form of linearization.

We suppose, as before, that the flow occupies the semi-infinite region regian< oo
and introduce the simple change of coordinates z — n(x, v, t), which maps the bound-
ary atz = n(x, y,t) on to the plane defined b¥ = 0. (More generally we could also
incorporate a transformation of the forkh= f(x, y,t), Y = g(x, y, t) in the x-y plane.
Such a transformation was used, implicitly, when cylindrical polar coordinates were ¢
plied in a rotating frame for our study of the rotating disk boundary layer flow. How
ever, we omit any further details here in the interests of brevity.) By making the subs
tutions

J)X(Xa ya Zst) za)x(X, ya Z»t)a
(;)y(x, yv Z’ t) = a)y(X, yv Z) t)v
WXy, Z,t) = w(X, Y, z,1),

for the primary variable$wy, wy, w}, and similarly for the secondary variablgs v, .},

the two vorticity transport equations, the Poisson equation and the secondary variable
initions can all be transformed in a straightforward manner to yield a system in whi
both the primary variables and the secondary variables, as well as the differential
integral operators that act upon them, are expressed in teriisrather thare. Of par-
ticular interest are the transformed definitions of the secondary variables. These take
form

/@ 0w d 0
@Zz/ ( ‘”X+“)y>dz+”@x+”5)y.
Z

As would be expected, the secondary variables are still defined explicitly in terms of 1
primary variables. The only change is that there are some additional terms that involve
slope of the nonplanar physical boundary. Using the above definitions of the seconc
variables, it may be readily shown that the no-slip conditions stated in Section 2.2 carn
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cast as vorticity integral conditions that take the form

o 91 9

/@ydzz—uw—/ Laz- T,
0 o 0X X
oo "0 911 9

/ 5)de=011;+/ £d2+lw11)a
0 0

whereu,,, v,,, w,, are the prescribed velocities far= 5, as in Egs. (25)—(27). Thus, the
no-slip conditions can be imposed using constraints that only involve integration over
fixed semi-infinite interval O< Z < oo. Finally, we note that the wall-normal coordinate
mapping considered in Section 2.3 can be appliet] tather tharz, to map the semi-infinite
domainZ € [0, co) on to a finite computational domain. Thus, we set

‘Tz

wherel is a mapping constant, to obtain a computational domain suclt tagD, 1]. A
discretization based upon Chebyshev expansions can then be applied for the wall-no
variation, as described in Section 4.

APPENDIX C

An Alternative Time-Stepping Method

In Section 4.2 we described a time-stepping method that employs a second-order, tt
point, backward-difference formula for the time derivatives. This formula was applied
conjunction with a predictor-corrector method for the convective terms in the vortici
transport equations. The decision to implement the time integration in such a fashion
motivated by our previous experience in simulating fluid-structure interactions for a tw
dimensional flow [14]. We had found that the use of a fully implicit time-stepping procedu
could provide a robust means of overcoming numerical stability problems. However, in
absence of any interactive coupling between the motion of the fluid and its bounding we
the conditions required for numerical stability can be relaxed. This allows more expli
time-stepping methods to be adopted.

Accordingly, for cases without any interactive wall motion coupling, we have develop
and implemented a Crank—Nicholson/Adams—Bashforth type of method for the time st
ping. In this alternative numerical scheme, all the terms appearing in the vorticity transg
equations, with the exception of those viscous terms involeidgrivatives, can be treated
in an explicit fashion by means of a predictor-corrector scheme. It is also possible to ti
the vorticity integral constraints in an explicit manner. The advantage of the resulting ¢
cretization scheme is that the two primary-variable vorticity components can be determi
directly, at every radial location, prior to the solution of the Poisson equatiow fdihe
modified scheme for obtaining the each vorticity component thus involves only a sin
radial line march, rather than the more expensive radial line iteration described previou
Line iteration is still needed to solve the Poisson equationyboén now be constructed
using already determined values of the vorticity.

The improvements to the time-stepping procedure can be illustrated by re-employing
notation that was first introduced in Section 4.2. In the same manner as for Eq. (84),
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discretized equations to be solved at each time step may be cast in the form,

W ol I
TjW! =B, +Dl;,

where the matrixS is now independent of the radial location. The right-hand sides
the two discretized vorticity transport equations can be computed explicitly, using kno
values of the primary variables. Thus, the tetth§; and Bgll- appearing in Eqg. (84) are no
longer present. Because the matfixemains pentadiagonal, apart from its first row, the
Chebyshev vector®/; and; can be determined froiG/; andCy; in a very efficient
manner. The right-hand side of the discretized Poisson equation contains an additional !
D,',JJ-, denoting the quantities that can be computed directly, without any need for iterati
from the previously determined vaIuesSdfj andﬂ(}j. The vectoBL,j is now defined so
that it depends only on the valueswfat locations that are radially inward or outward from
the selected radial position. Plainly, then, radial line iteration is still required in order
obtain the Chebyshev vectors; .

To summarize, it may be stated that in the alternative time-stepping scheme, radial
iteration is replaced by a single radial line march for each of the vorticity transport equatio
but a slightly modified, radial line iteration is retained for the Poisson equation. In the mz
body of the text there are a number of references to radial line iterations. When interac
wall motion is not involved, most of these references should, strictly speaking, be replacet
areferencetotheradial line marching/radial line iteration combination outlined immediatt
above.

APPENDIX D

Chebyshev Discretization for the Secondary Variables

The definitions of the secondary variables take the general form

f=/ gdz
z

where f is the secondary variable amflis specified in terms of the primary variables
and their derivatives in the planes orthogonal tozitérection. Introducing the coordinate
mapping¢ = |/(z+ 1), which maps the semi-infinite interval,[8o) to the finite interval
(0, ¢], yields the relationship

¢
g
f=I / = d¢.
Jo ¢ ¢
Setting
9= ok Tac1(0), h= % =5 hTac1(0),
k=1 k=1
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and using the fact that

1
2 Tk1 = Z(T2k+1 + 2Tk—1 + Tok—3),
we can conclude that
1
Ok = Z(hk—l + 2hy + hgyp).

We also have
¢ 131
/ hd; = 2 Z E(hk — hi 1) (Ta(€) — Ta(0)),
JO k=1

where we have employed the identity

1., 1
ATa1 = Tae— 7 Teten)

for k > 1. Thus, we can set
f=> f(Tx(@) — Tx(0),
k=1

where

|
fu = &(hk — hiyp).

Hence, as may easily be checked,

I
(K+ 1) frpq + 2kfe + (k— 1) feqg = Z(hkfl + 2hy + N1 — (e + 2hig 1 + o).

Using the relation between the Chebyshev coefficientg ahd h given earlier, we can
remove all reference to the intermediate varidbl®Ve thus obtain

K+ D fipr + 2k + (k= 1) fr1 = 1(Oc — Gkt1)s

which, when truncated to finite order, is the relationship that was used to derive the tridi
onal schemes for the secondary-variable Chebyshev coefficients given in Eqs. (68)—(’

Finally, we outline the method used to compute the constantghich are required for
the numerical evaluation of integrals across the boundary layer. Such integrals appear il
integral constraints imposed on the vorticity and also in the expression for the perturba
fluid pressure at the solid surface. For the case of untruncated Chebyshev expansion:
constantgy may be defined by setting

flm0 = / gdz= Z Pr Ok -
0 k=1
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For the finite-order truncation, the constants may be determined by first computing
matrix Pjx which satisfies

(k-1 Pjk-1+ 2k P« + (k+1) Pik+1 =08k — 8j k1

for j,k=1,..., M, and then setting

M/2

pc =2 Z Pe.2j-1,

=1

as may be demonstrated by applying the previously obtained relationship between
Chebyshev coefficientf, g« to evaluatef |,—o = f|,=1 whengy = §j «.

APPENDIX E

Two-Dimensional Version of the Velocity—Vorticity Formulation

With a view to the applications mentioned in the concluding section of the main part of t
paper, we present the two-dimensional restriction of the velocity—vorticity formulation f
the case of deviations from a prescribed parallel flow. If welJet denote streamwise and
wall-normal velocity components corresponding to a two-dimensional perturbation frc
the parallel flowd = (Up(2), 0, 0), and letw denote the associated vorticity perturbation,
then the Navier—Stokes equations can be cast in the form

w U dw JI(Uw) JI(ww)

1 1
o o U// — _VZ _U///
ot " Pax T ax oz T Vop @

R R P’

whereV? now denotes the two-dimensional Laplacian.

It may be seen that, just as for the three-dimensional formulation, the streamwise pel
bation velocity component is defined explicitly in terms of the wall-normal component
w and the vorticity perturbatiom. Thus,u may be eliminated from the vorticity transport
equation, leaving a system of two partial differential equations for the two unknawns
w. It should also be noted that the profilg(z) of the parallel flow may be chosen to take
any form that is convenient for the problem at hand: it certainly does not need to be
exact solution of the Navier—Stokes equations. Parallelized simulations can be condu
by simply omitting the final term ARU’ from the right-hand side of the transport equation.
This term would otherwise act as a source for the generation of a nonparallel base flov

We suppose that the boundary conditions at the locatien(x, t) of the solid surface
bounding the flow take the form

uix, n,t) = u, (X, 1), wx, n,t) = w,(X,t).

The integral condition that constrains the evolution of the vorticity is then given by

o0 o0
0
/wdz:—uw—/ —wdz.
0 n  0X
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As before, this is fully equivalent to the no-slip condition. Continuity holds at all locatior
provided only that the normal-velocity satisfies the condition

Jw

— —> 0 forz— oo.

0z

As was mentioned briefly in the main text, the two-dimensional formulation has al

been employed to compute the steady flow near the trailing edge of a flat plate. Essenti
all that was required was that the vorticity integral condition be exchanged for the sim
center-line symmetry condition

»(x,0,t) = —U(0),

for locations in the wake beyond the end of the plate.

Finally, we remark that some of the ideas that we developed within our velocity—vortic
formulation could also find an application in a streamfunction—vorticity formulation for th
case of two-dimensional flow. In particular, if we introduce a streamfunatipthen the
no-slip condition can be very simply translated into a vorticity integral constraint of the for

o) 00 02
/wdz:—uw+/ %dz

n n

Coupling the enforcement of this condition to the solution of the vorticity transport equati
provides a rigorous alternative to the employment of an artificial wall-vorticity bounda
condition.
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